$\begin{array}{l} \text{Review of day 1.} \\ \text{Preservation of } \omega \text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\leq \omega} \quad \text{and topological groups} \\ \text{Malykhin's Problem} \end{array}$

Winter School in Abstract Analysis 2013

Forcing with filters and ideals (part II.) Malykhin's Problem

Michael Hrušák

CCM Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Hejnice 2013

 $\begin{array}{l} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}} \mbox{ forcing} \\ \mathcal{I}^{\leq \omega} \mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Contents

1 Review of day 1.

 $\fbox{2}$ Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

3 $\mathcal{I}^{<\omega}$ and topological groups

4 Malykhin's Problem

< ∃> < ∃>

A >

 $\begin{array}{l} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Filters and ideals

An ideal ${\mathcal I}$ on ω is

- tall if for every infinite A ⊆ ω there is an I ∈ I such that |A ∩ I| is infinite,
- ω -hitting if for every $\langle A_n : n \in \omega \rangle \subseteq [\omega]^{\omega}$ there is an $I \in \mathcal{I}$ such that $A_n \cap I$ is infinite for all $n \in \omega$,

Observation. If you split an ω -hitting ideal into countably many pieces, one of the pieces is ω -hitting.

- (Katětov order)Let \mathcal{I} and \mathcal{J} . $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$, for all $I \in \mathcal{I}$.
- (Katětov-Blass order) As above with a finite-to-one function f.

 $\begin{array}{l} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Mathias and Laver type forcings

Let ${\mathcal F}$ be a filter on $\omega.$ Then

$$\mathbb{M}_{\mathcal{F}} = \{(s, A) : s \in [\omega]^{<\omega} \text{ and } A \in \mathcal{F}\}$$

ordered by $(s, A) \leq (t, B)$ if $s \supseteq t$, $A \subseteq B$ and $s \setminus t \subseteq B$, and

$$\mathbb{L}_{\mathcal{F}} = \{ T \subseteq \omega^{<\omega} : T \text{ is a tree with stem } s_T \text{ such that} \\ \text{for all } t \in T, t \supseteq s_T \Rightarrow \textit{succ}_T(t) \in \mathcal{F} \},$$

ordered by inclusion.

 $succ_T(t) = \{n \in \omega : t^n \in T\},\$

Definition

Given $s \in \omega^{<\omega}$ and φ formula in the forcing language we say that s favours φ if no condition in $\mathbb{L}_{\mathcal{F}}$ with stem s forces " $\neg \varphi$ ".

 $\begin{array}{c} \text{Review of day 1.} \\ \textbf{Preservation of } \omega \textbf{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\, \leq \, \omega} \quad \text{and topological groups} \\ Malykhin's Problem \end{array}$

Contents

1 Review of day 1.

2 Preservation of ω -hitting and the $\mathbb{L}_{\mathcal{F}}$ forcing

- 3 $\mathcal{I}^{<\omega}$ and topological groups
- 4 Malykhin's Problem

< ∃> < ∃>

A >

 $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Preservation of ω -hitting

Definition

A forcing notion \mathbb{P} strongly preserves ω -hitting if for every sequence $\langle \dot{A}_n : n \in \omega \rangle$ of \mathbb{P} -names for infinite subsets of ω there is a $\langle B_n : n \in \omega \rangle$ sequence of infinite subsets of ω such that for any $B \in [\omega]^{\omega}$, if $B \cap B_n$ is infinite for all n then $\Vdash_{\mathbb{P}}$ " $B \cap \dot{A}_n$ is infinite for all n".

Proposition (Brendle-H.)

Finite support iteration of forcings strongly preserving ω -hitting strongly preserves ω -hitting.

医肾管医肾管医炎

 $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing:} \\ \mathcal{I}^{\leq \omega} \mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Preservation of ω -hitting by $\mathbb{L}_{\mathcal{F}}$

Back to $\mathbb{L}_{\mathcal{F}}$:

Lemma (Brendle-H.)

Let ${\cal I}$ be an ideal on ω and let ${\cal F}={\cal I}^*$ be the dual filter. Then the following are equivalent:

(1) For every $A \in \mathcal{I}^+$ and every $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright A$ the ideal \mathcal{J} is not ω -hitting,

(2) $\mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting, and

(3) $\mathbb{L}_{\mathcal{F}}$ preserves ω -hitting.

Proof: (2) \Rightarrow (3) \Rightarrow (1) is easy. To see (1) \Rightarrow (2), assume not, i.e. there is a sequence $\langle A_n : n \in \omega \rangle$ of \mathbb{P} -names for infinite subsets of ω such that for any $\langle B_n : n \in \omega \rangle$ sequence of infinite subsets of ω there is a $B \in [\omega]^{\omega}$ such that $B \cap B_n$ is infinite for all n yet there is a condition $T_B \in \mathbb{L}_F$ such that for some $n_B, m_B \ T_B \Vdash "B \cap \dot{A}_{n_B} \subseteq m_B"$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Preservation of ω -hitting by $\mathbb{L}_{\mathcal{F}}$

... want to prove ...

For every $X \in \mathcal{I}^+$ and every $\mathcal{J} \leq_{\kappa} \mathcal{I} \upharpoonright X$ the ideal \mathcal{J} is not ω -hitting, $\Rightarrow \mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting.

Let $\mathcal{J} = \{B \in [\omega]^{\omega} : \exists T_B \in \mathbb{L}_{\mathcal{F}}, n_B, m_B \text{ s. t. } T_B \Vdash ``B \cap A_{n_B} \subseteq m_B"'\}.$ Define

rank_n(s) = 0 iff either (1) $\exists Z \subseteq \omega$ infinite $\forall k \in Z(s \text{ favours } k \in \dot{A}_n)$, or (2) $\exists X \in \mathcal{I}^+$ and $f : X \to \omega \ \forall l \in X \ s^{\frown}l$ favours $f(l) \in \dot{A}_n$ and $\forall k \in \omega$ $f^{-1}(k) \in \mathcal{I}$ finally, $rank_n(s) \le \alpha$ if $\{i : rank(s^{\frown}i) < \alpha\} \in \mathcal{I}^+$. **Claim:** For all *s*, $rank_n(s) < \infty$.

(Hint: If not, construct a condition with stem s which forces A_n finite.)

通 と く ヨ と く ヨ と

 $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Preservation of ω -hitting by $\mathbb{L}_{\mathcal{F}}$

... still want ...

For every $X \in \mathcal{I}^+$ and every $\mathcal{J} \leq_{\kappa} \mathcal{I} \upharpoonright X$ the ideal \mathcal{J} is not ω -hitting, $\Rightarrow \mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting.

Have $\mathcal{J} = \{B \in [\omega]^{\omega} : \exists T_B \in \mathbb{L}_{\mathcal{F}}, n_B, m_B \text{ s. t. } T_B \Vdash "B \cap A_{n_B} \subseteq m_B"\}$ ω -hitting, and WLOG, for each B, $rank_{n_B}(s_{T_B}) = 0$. Now, fix s, n such that $\mathcal{J}_0 = \{B \in \mathcal{J} : s_B = s \text{ and } n_B = n\}$ is ω -hitting.

Then either of the following leads to a contradiction: **Case 1.** $\exists Z \subseteq \omega$ infinite $\forall k \in Z(s \text{ favours } k \in \dot{A}_n)$. **Case 2.** $\exists X \in \mathcal{I}^+$ and $f : X \to \omega \ \forall l \in X \ s^{\frown}l$ favours $f(l) \in \dot{A}_n$ and $\forall k \in \omega \ f^{-1}(k) \in \mathcal{I}$. $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing:} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Preservation of ω -hitting by $\mathbb{L}_{\mathcal{F}}$

... keep wanting to prove:

For every $X \in \mathcal{I}^+$ and every $\mathcal{J} \leq_{\kappa} \mathcal{I} \upharpoonright X$ the ideal \mathcal{J} is not ω -hitting, $\Rightarrow \mathbb{L}_{\mathcal{F}}$ strongly preserves ω -hitting.

Have s, n such that $\mathcal{J}_0 = \{B \in \mathcal{J} : s_B = s \text{ and } n_B = n\}$ is ω -hitting.

Case 1. $\exists Z \subseteq \omega$ infinite $\forall k \in Z(s \text{ favours } k \in A_n)$.

Pick $B \in \mathcal{J}_0$ such that $B \cap Z$ is infinite and $k > m_B$ such that $k \in B \cap Z$. Then there is $S \leq T_B$ such that $S \Vdash "k \in A_n$ ", a contradiction.

Case 2. $\exists X \in \mathcal{I}^+$ and $f : X \to \omega \ \forall l \in X \ s^{-l}$ favours $f(l) \in A_n$ and $\forall k \in \omega \ f^{-1}(k) \in \mathcal{I}$.

 \mathcal{J}_0 is ω -hitting, so there is a $B \in \mathcal{J}_0$ such that $f^{-1}[B] \in \mathcal{I}^+$. So there is a $k \in B \cap ran(f)$, $k > m_B$, such that $f^{-1}(k) \cap succ_{\mathcal{T}_B}(s) \neq \emptyset$. Pick $j \in f^{-1}(k) \cap succ_{\mathcal{T}_B}(s)$. Then $s \cap j$ favours $k \in A_n$ and hence there is a condition S whose stem extends $s \cap j$ such that $S \Vdash k \in A_n$ " $\Rightarrow s \in \mathbb{R}$ $\begin{array}{c} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

Selected applications of $\mathbb{L}_\mathcal{F}$ and $\mathbb{M}_\mathcal{F}$

- Any inequality in the Cichoń diagram can be forced by a FSI of some combination of Random, L_F and M_F over a model of either CH or MA + ¬CH (try it, it is fun).
- (Brendle) Consistency of $\mathfrak{b} < \mathfrak{s}$ and $\mathfrak{b} < \mathfrak{a}$ with large continuum.
- (Brendle) Consistently distinguish distributivity numbers of various σ -closed partial orders of size c.
- (Blass-Shelah, Brendle, Brendle-Fisher) Matrix iterations
- (H.- Ramos García) Consistency of every separable Fréchet group is metrizable.

 $\begin{array}{c} \text{Review of day 1.} \\ \text{Preservation of } \omega \text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{U} \leq \omega \text{ and topological groups} \\ \text{Malykhin's Problem} \end{array}$

Contents

1 Review of day 1.

- $\fbox{2}$ Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing
- (3) $\mathcal{I}^{<\omega}$ and topological groups
- 4 Malykhin's Problem

< ∃> < ∃>

 $\begin{array}{c} \text{Review of day 1.} \\ \text{Preservation of } \omega \text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\textstyle < \omega} \text{ and topological groups} \\ \text{Malykhin's Problem} \end{array}$

$\mathcal{I}^{<\omega}$ and ED topological groups

Recall that fin denotes the set of non-empty finite subsets of $\omega,$ and given ${\cal I}$ an ideal on ω

$$\mathcal{I}^{<\omega} = \{ A \subseteq fin : (\exists I \in \mathcal{I}) (\forall a \in A) \ a \cap I \neq \emptyset \}.$$

If $\mathcal{F} = \mathcal{I}^*$ then $(\mathcal{I}^{<\omega})^* = \mathcal{F}^{<\omega} = \langle [F]^{<\omega} : F \in \mathcal{F} \rangle$ induces a group topology $\tau_{\mathcal{I}}$ on the Boolean group $[\omega]^{<\omega}$ with the symmetric difference as the group operation by declaring $\mathcal{F}^{<\omega}$ the filter of neighbourhoods of the \emptyset .

Theorem (Louveau)

The group $([\omega]^{<\omega}, \tau_{\mathcal{I}})$ is extremally disconnected iff $\mathcal{F} = \mathcal{I}^*$ is a selective ultrafilter.

The same construction works on a measurable cardinal, and yet another example can be obtained from Matet forcing with a union-ultrafilter.

・吊り イラト イラト

 $\begin{array}{c} \text{Review of day 1.} \\ \text{Preservation of } \omega\text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\leq \omega} \text{ and topological groups} \\ \text{Malykhin's Problem} \end{array}$

$\mathcal{I}^{<\omega}$ and ED topological groups

Question (Archangel'skii)

Is there a non-discrete extremally disconnected topological group?

Question

Let \mathbb{G} be an extremally disconnected topological group and let $f: \mathbb{G} \to 2^{\omega}$ be a continuous function. Is there a non-empty open set $U \subseteq \mathbb{G}$ such that f[U] is nowhere dense?

 $\begin{array}{l} \mbox{Review of day 1.} \\ \mbox{Preservation of } \omega\mbox{-hitting and the } \mathbb{L}_{\mathcal{F}}\mbox{ forcing} \\ \mathcal{I}^{\leq \omega}\mbox{ and topological groups} \\ \mbox{Malykhin's Problem} \end{array}$

$\mathcal{I}^{<\omega}$ and Fréchet topological groups

Definition

A topological space X is *Fréchet* if for every $A \subseteq X$ and every $x \in \overline{A}$ there is a sequence $\langle x_n : n \in \omega \rangle$ of elements of A converging to x.

The topology $\tau_{\mathcal{I}}$ on $[\omega]^{<\omega}$ is Fréchet iff every $\mathcal{I}^{<\omega}$ -positive set contains an infinite set in $(\mathcal{I}^{<\omega})^{\perp}$. Recall that if \mathcal{I} is an ideal on a set X then

$$\mathcal{I}^{\perp} = \{J \subseteq X : (\forall I \in \mathcal{I}) | I \cap J | < \omega\}.$$

 $\tau_{\mathcal{I}}$ is metrizable if and only if the ideal \mathcal{I} is countably generated.

Question (Reznichenko-Sipacheva, Gruenhage-Szeptycki)

Is there an uncountably generated ${\mathcal I}$ such that $\tau_{\mathcal I}$ is Fréchet?

伺 と く ヨ と く ヨ と

 $\begin{array}{c} \text{Review of day 1.} \\ \text{Preservation of } \omega \text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\leq \omega} \text{ and topological groups} \\ \mathbf{Malykhin's Problem} \end{array}$

Contents

1 Review of day 1.

2 Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

 $\textcircled{3} \mathcal{I}^{<\omega}$ and topological groups

4 Malykhin's Problem

A B > A B >

A >

Malykhin's problem

Problem (Malykhin 1978)

Is every countable Fréchet group metrizable?

Partial negative solutions:

- $\mathfrak{p} > \omega_1 \dots$ Yes
- (Gerlits-Nagy) There is an uncountable γ -set ... Yes
- (Nyikos) $\mathfrak{p} = \mathfrak{b} \dots$ Yes
- (Ohrenstein-Tsaban) $\mathfrak{p} = \mathfrak{b}$ there is an uncountable γ -set.

Recall that a set of reals Y is a $\gamma\text{-set\,}$ if every open $\omega\text{-cover}$ of Y has a $\gamma\text{-subcover}.$ A cover $\mathcal U$ is an

- ω -cover if every finite subset of Y is contained in an element of \mathcal{U} ,
- γ -cover if every element of Y is contained in all but finiely many elements of \mathcal{U} .

- 4 同 2 4 日 2 4 日 2

Malykhin's problem

Problem (Malykhin 1978)

Is every countable Fréchet group metrizable?

Partial negative solutions:

- $\mathfrak{p} > \omega_1 \dots$ Yes
- (Gerlits-Nagy) There is an uncountable γ -set ... Yes
- (Nyikos) $\mathfrak{p} = \mathfrak{b} \dots$ Yes
- (Ohrenstein-Tsaban) $\mathfrak{p} = \mathfrak{b}$ there is an uncountable γ -set.

Recall that a set of reals Y is a $\gamma\text{-set\,}$ if every open $\omega\text{-cover}$ of Y has a $\gamma\text{-subcover.}$ A cover $\mathcal U$ is an

- ω -cover if every finite subset of Y is contained in an element of \mathcal{U} ,
- γ -cover if every element of Y is contained in all but finiely many elements of \mathcal{U} .

- 4 同 2 4 日 2 4 日 2

The solution

Theorem (H.-Ramos García)

It is consistent with **ZFC** that every separable Fréchet group is metrizable.

Plan of the proof:

Using a standard bookkeeping argument we construct a FS iteration of length $\omega_2 \sigma$ -centered forcing notions, eventually taking care of all countable Fréchet groups of weight less than ω_1 . At stage α when dealing with the group \mathbb{G}_{α} handed to us by the bookkeeping device we need to do three things:

- add a set A ⊆ G_α which has the neutral element 0 as an accumulation point, and does not have a sequence converging to 0,
- added earlier in the iteration.
- **3** make sure that 0 remains in the closure of A later on.

Fréchet idealized

- Given a space X and a point x ∈ X we denote by I_x the dual ideal to the filter of neighbourhoods of x, I_x = {A ⊆ X : x ∉ Ā}.
- If X is countable then the infinite members of $\mathcal{I}^{\perp} = \{J \subseteq X : (\forall I \in \mathcal{I}) | I \cap J | < \omega\}$ are exactly the sequences convergent to x.
- The space X is Fréchet at x iff every *I_x*-positive set contains an infinite element of *I_x[⊥]* iff *I_x^{⊥⊥} = I_x* iff for no A ∈ *I_x⁺* is the ideal *I_x* ↾ A tall.

Definition

A forcing notion \mathbb{P} seals an ideal \mathcal{I} if it adds an \mathcal{I} -positive set A such that the ideal $\mathcal{I} \upharpoonright A$ is countably tall.

伺い イヨト イヨト

Review of day 1. Preservation of ω -hitting and the $\mathbb{L}_{\mathcal{F}}$ forcings $\mathcal{I}^{\leq \omega}$ and topological groups Malykhin's Problem

Sealing $\mathcal I$ by $\mathbb{L}_{\mathcal F}$

Lemma

```
Let \mathcal{I} be an ideal on \omega and let \mathcal{F} be al filter on \omega.
```

IF

 $\mathcal{I} \cap \mathcal{F} = \emptyset$ and for every countable family $\mathcal{H} \subseteq \mathcal{F}^+$ there is an $I \in \mathcal{I}$ such that $H \cap I \in \mathcal{F}^+$ for all $H \in \mathcal{H}$ (i.e. \mathcal{I} is ω -hitting w.r.t. \mathcal{F}^+)

THEN

the forcing $\mathbb{L}_{\mathcal{F}}$ seals the ideal \mathcal{I} .

Proposition

Let $X = (\omega, \tau)$ be a regular Fréchet space, $x \in X$ be such that $\pi \chi(x, X) > \omega$. Let \mathcal{G} be the filter of dense open subsets of X. Then: (1) $\mathbb{L}_{\mathcal{G}}$ seals \mathcal{I}_x , and (2) $\mathbb{L}_{\mathcal{G}}$ strongly preserves countable tallness.

 $\begin{array}{c} \text{Review of day 1.} \\ \text{Preservation of } \omega \text{-hitting and the } \mathbb{L}_{\mathcal{F}} \text{ forcing} \\ \mathcal{I}^{\leq \omega} \text{ and topological groups} \\ \mathbf{Malykhin's Problem} \end{array}$

Sealing ${\mathcal I}$ by ${\mathbb L}_{{\mathcal F}}$

... to be continued ...

M. Hrušák Forcing with filters and ideals (part II.) Malykhin's Problem

A ►

2